inorganic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Chiraz Falah, Habib Boughzala and Tahar Jouini*

Département de Chimie, Faculté des Sciences, Campus Universitaire, 2092 El Manar, Tunis, Tunisia

Correspondence e-mail: tahar.jouini@fst.rnu.tn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (As-O) = 0.007 Å R factor = 0.026 wR factor = 0.051 Data-to-parameter ratio = 12.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Tripotassium dibismuth(III) tris[arsenate(V)], K₃Bi₂(AsO₄)₃

The title compound was prepared by a solid-state reaction at 1123 K. Its structure is closely related to that of alluaudite. The main structural feature is the presence of infinite chains of edge-sharing Bi_2O_{10} dimers, which are linked by AsO_4 tetrahedra to form a framework enclosing two types of channels where K⁺ cations reside. The X1 site of the alluaudite structure is occupied by K⁺, whereas the X2 site is empty.

Received 5 March 2004 Accepted 10 May 2004 Online 15 May 2004

Comment

Phosphates such as $M_3^{I}M_2^{III}(PO_4)_3$ ($M^{I} = Li$, Na, $M^{III} = Cr$, Fe, Sc) have been extensively investigated. They are known to be fairly good ionic conductors, structurally related to Nasicon, Na₃Zr₂Si₂PO₁₂. In contrast, arsenates exhibit other structure types: Li₃Cr₂(AsO₄)₃ has a garnet structure, Na₃Sc₂(AsO₄)₃ is structurally related to γ -Na₃Sc₂(PO₄)₃ (hexagonal Nasicon-like structure), whereas the three compounds Li₃(Fe,In,Sc)₂-(AsO₄)₃ are structurally related to the monoclinic Fe₂(SO₄)₃. The investigation of Bi compounds has the added interest that structural modifications occur in the coordination polyhedra due to the non-bonding lone pair, leading to new structures. However, the effect of lone pairs has been studied by few authors. For these reasons, we have investigated the *A*–Bi–P–

Figure 1

A projection of the structure of $K_3Bi_2(AsO_4)_3$, viewed along the *c* axis. Colour key: BiO₆ polyhedra yellow and AsO₆ polyhedra blue.

 \odot 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 2

A view of a portion of the structure of $K_3Bi_2(AsO_4)_3$, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

O system (A = monovalent cation) and have previously reported the syntheses and crystal structures of $Na_5Bi(P_2O_7)_2$ (Boughzala & Jouini, 1999), K₃Bi₂(PO₄)₃ (Falah et al., 2001) and Rb₆Bi₄(PO₄)₂(P₂O₇)₄ (Falah et al., 2003). In further investigations, we replaced P by As in order to find new alkali bismuth arsenate compounds in the A-Bi-As-O system (A being a monovalent cation). In this paper, we report the synthesis and X-ray structure determination of a new arsenate, viz. K₃Bi₂(AsO₄)₃.

The title compound has an alluaudite-like structure (Moore, 1971; Lii & Ye, 1997). In fact, there is a second known arsenate mineral with the alluaudite structure. The structure of the title compound is built up from BiO₆ octahedra and AsO₄ tetrahedra sharing corners to form a three-dimensional framework enclosing two types of channels where K^+ ions reside (Fig. 1). The BiO_6 octahedra appear to be more distorted than is usual for MO_6 in the alluaudite structure, which is characteristic of the lone-pair effect. Bi is coordinated by three O atoms with short bonds [2.199 (6) < Bi - O < 2.296 (7) Å] on one side and by three long bonds [2.505 (6) < Bi - O < 2.579 (7) Å] on the other side (Fig. 2). This geometry is compatible with the stereoactivity of the bismuth lone pair, which points its orbital lobe between the longest Bi-O bonds. The Bi-O6 distance is characteristic of the triply bridging O atom O6, shared by As2O₄ tetrahedra and two BiO₆ octahedra. The bond-valence sum using Brown's method (Brown & Altermatt, 1985), which gives 2.99, is in good agreement with the oxidation state of Bi. Comparison with the crystal structure of a natural alluaudite from the Buranga pegmatite of Central Africa (Moore, 1971; Yakubovich *et al.*, 1977) indicates that the X1 site at $(\frac{1}{2}, 0, 0)$ is partly filled with Na⁺, Ca²⁺ and Mn²⁺, whereas, in the title compound, the X1 site is fully occupied by K3. A new site shifted from the X1 site by $\frac{1}{4}$ or $-\frac{1}{4}$ in z at a general position near $\frac{1}{2},0,z$ is fully occupied by K1. The X2 site is empty in

natural alluaudite and partly filled by cations smaller than K⁺ alluaudite-like structures, viz. Na₃In₂(AsO₄)₃ in other 1997) (Khorari et al., and NaCo₃(AsO₄)- $(HAsO_4)_2$ (Lii & Shih, 1994). In the title compound, K⁺ cannot be accommodated in this site and the X2 site remains empty. This is the reason why K^+ has moved to the X1 site. The M1 site is occupied by K2 and the M2 site is filled by Bi, as observed in $K_3Bi_2(PO_4)_3$ (Falah *et al.*, 2001). There are the two examples of the full occupancy of the X1 and M1 sites by K^+ cations. K1, K2 and K3 ions are coordinated by ten, eight and six O atoms, respectively, with distances ranging from 2.681 (6) to 3.319 (7) Å, forming irregular coordination polyhedra. The bond-valence sums of the K-O bonds using the formula of Brown & Altermatt (1985) are 1.25, 1.28 and 1.11 for K1, K2 and K3, respectively. Thus, the high valence bond sums appear to compensate for the shortfall in the sums, 4.90 and 4.86, for As1 and As2.

Experimental

The title compound can be prepared by solid-state reaction techniques. The synthesis procedure is as follows. Stoichiometric quantities of the appropriate reagents (K₂CO₃, Bi₂O₃ and NH₄H₂PO₄) were intimately mixed and calcined in air at 623 K for 12 h in an alumina crucible. These ingredients were then heated to 1123 K for 40 d and finally cooled to room temperature in the furnace. The product was washed with boiling water. This led to the formation of parallelepiped-shaped colourless crystals of K₃Bi₂(AsO₄)₃.

Crystal data	
$K_{3}Bi_{2}(AsO_{4})_{3}$ $M_{r} = 952.02$ Monoclinic, C2/c a = 14.030 (2) Å b = 13.773 (2) Å c = 7.009 (2) Å $\beta = 114.71$ (2)° V = 1230.4 (3) Å ³	$D_x = 5.140 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 25 reflections $\theta = 9.6-14.9^{\circ}$ $\mu = 37.65 \text{ mm}^{-1}$ T = 293 (2) K Parallelepiped, colourless
Z = 4	$0.11 \times 0.04 \times 0.04 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer ω -2 θ scans Absorption correction: ψ scan (North et al., 1968) $T_{\rm min}=0.164,\;T_{\rm max}=0.255$ 1387 measured reflections 1203 independent reflections 1006 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.051$ S = 1.081203 reflections 95 parameters

$\kappa_{\rm int} = 0.021$
$\theta_{\rm max} = 26.0^{\circ}$
$h = -17 \rightarrow 15$
$k = 0 \rightarrow 16$
$l = 0 \rightarrow 8$
2 standard reflections
frequency: 120 min
intensity decay: 2%

. . . .

 $w = 1/[\sigma^2(F_o^2) + (0.01P)^2]$ where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 1.09 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -1.22 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 Extinction coefficient: 0.00050 (2)

Table 1

Selected geometric parameters (Å, °).

Bi-O2 ⁱ	2.199 (6)	K1-O2 ^{vi}	2.860 (7)
Bi-O4 ⁱⁱ	2.231 (6)	K1-O5	2.919 (6)
Bi-O6 ⁱⁱⁱ	2.296 (7)	K1-O4	2.984 (7)
Bi-O5 ^{iv}	2.457 (7)	K1-O2 ^{vii}	3.319 (6)
Bi-O1 ^v	2.505 (6)	K2-O4	2.684 (6)
Bi-O6 ⁱ	2.579 (7)	K2–O1 ^{vii}	2.735 (7)
As2-O3	1.663 (6)	K2-O3 ⁱⁱⁱ	2.865 (7)
As2-05	1.694 (6)	K2–O2 ^{vii}	3.067 (7)
As2-O4	1.709 (6)	K3–O3 ^{viii}	2.681 (7)
As2-06	1.717 (6)	K3–O3 ⁱⁱⁱ	2.681 (7)
As1-O1	1.668 (7)	K3–O3 ^{ix}	2.757 (7)
As1-O2	1.716 (6)	K3-O1 ^x	2.854 (7)
K1-O5 ^{vi}	2.681 (6)		
O2 ⁱ -Bi-O4 ⁱⁱ	82.1 (2)	O1 ^v -Bi-O6 ⁱ	77.2 (2)
O2 ⁱ -Bi-O6 ⁱⁱⁱ	80.7 (2)	O3-As2-O5	112.5 (3)
O4 ⁱⁱ -Bi-O6 ⁱⁱⁱ	82.8 (2)	O3-As2-O4	108.4 (3)
O2 ⁱ -Bi-O5 ^{iv}	79.8 (2)	O5-As2-O4	108.3 (3)
O4 ⁱⁱ -Bi-O5 ^{iv}	79.9 (2)	O3-As2-O6	110.9 (3)
O6 ⁱⁱⁱ -Bi-O5 ^{iv}	155.5 (2)	O5-As2-O6	107.0 (3)
O2 ⁱ -Bi-O1 ^v	155.3 (2)	O4-As2-O6	109.7 (3)
O4 ⁱⁱ -Bi-O1 ^v	108.1 (2)	O1 ⁱ -As1-O1	109.5 (5)
O6 ⁱⁱⁱ -Bi-O1 ^v	78.5 (2)	O1 ⁱ -As1-O2	114.8 (3)
O5 ^{iv} -Bi-O1 ^v	123.5 (2)	O1-As1-O2	107.7 (3)
O2 ⁱ -Bi-O6 ⁱ	85.1 (2)	O1 ⁱ -As1-O2 ⁱ	107.7 (3)
O4 ⁱⁱ -Bi-O6 ⁱ	156.6 (2)	$O1-As1-O2^{i}$	114.8 (3)
O6 ⁱⁱⁱ -Bi-O6 ⁱ	75.9 (2)	$O2-As1-O2^{i}$	102.3 (4)
O5 ^{iv} -Bi-O6 ⁱ	116.9 (2)		

Symmetry codes: (i) $1 - x, y, \frac{3}{2} - z$; (ii) $1 - x, y, \frac{1}{2} - z$; (iii) $x - \frac{1}{2}, \frac{1}{2} - y, z - \frac{1}{2}$; (iv) 1 - x, 1 - y, 1 - z; (v) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (vi) $x, 1 - y, z - \frac{1}{2}$; (vii) x, y, z - 1; (viii) $\frac{3}{2} - x, y - \frac{1}{2}, \frac{3}{2} - z$; (ix) $\frac{3}{2} - x, \frac{1}{2} - y, 1 - z$; (x) $x, -y, z - \frac{1}{2}$.

The maximum and minimum electron-density peaks are located 1.98 and 1.76 Å from K1 and O2, respectively.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *MolEN* (Fair, 1990); program(s) used to solve structure: *SHELXS*86 (Sheldrick, 1990); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXL*97.

References

- Boughzala, H. & Jouini, T. (1999). J. Solid State Chem. 142, 104-110.
- Brandenburg, K. (1998). *DIAMOND*. Version 2.0. Crystal Impact GbR, Bonn, Germany.
 Brown, I. D. & Altermatt, D. (1985). *Acta Cryst.* B41, 244–247.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Fair, C. K. (1990). MolEN. Enraf-Nonius. Delft. The Netherlands.
- Falah, C., Boughzala, H. & Jouini, T. (2001). Z. Kristallogr. 216, 493-494.
- Falah, C., Boughzala, H., Jouini, T. & Madani, A. (2003). J. Solid State Chem. 173, 342–349.
- Khorari, S., Rulmont, A. & Tarte, P. (1997). J. Solid State Chem. 134, 31-37.
- Lii, K. H. & Shih, P. F. (1994). Inorg. Chem. 33, 3028-3031.
- Lii, K. H. & Ye, J. (1997). J. Solid State Chem. 131, 131-137.
- Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467–473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Yakubovich, O. V., Simonov, M. A., Egorov-Tismenko, Y. K. & Belov, N. V. (1977). Dokl. Akad. Nauk, 236, 1123–1126.